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Abstract This study concerns the electric potential dis-
tribution in the dark in nanocrystalline porous semi-
conductor electrodes, in full depletion conditions. Since
band bending in a single colloidal particle is small, the
idea is to develop a model that accounts for the total
potential drop resulting from the equilibration between
the Fermi level and the redox potential in the solution.
As preliminary steps, the band bending and potential
distribution in a planar electrode and also in a colloidal
semiconductor particle are reviewed. In order to over-
come the limitations of results based on these geome-
tries, a model based on a columnar shape is developed.
The Poisson equation is solved in the columnar elec-
trode, with careful consideration of the boundary con-
ditions. A large potential drop is shown to take place at
the back contact. To complete the study, the e�ect of the
depletion zone in the transparent conducting oxide is
analysed. Simple expressions are derived that permit
evaluation of how the total potential drop is distributed
between the electrode and the substrate. From this, the
strength and spatial range of the electric ®eld in the
electrode can be estimated.
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Introduction

The photoelectrochemical response of a planar semi-
conductor electrode is governed by the electric ®elds at
the surface. The depletion zone already formed in dark
conditions is largely responsible for e�cient charge
separation. In quantitative terms, the dependence of

quantum e�ciency on the applied voltage and wave-
length is usually described by Butler's application [1] of
the GaÈ rtner model [2] for illuminated Schottky barriers.

In recent years, a new class of photoelectrochemical
device based on porous nanocrystalline semiconductor
®lms has raised much attention [3]. Nanostructured elec-
trodes are composed of small, lightly doped particles of
diameter ranging from 5 to 50 nm, that are partly sintered
together to form a porous ®lm. The porous structure is
interpenetrated by the electrolyte all the way up to the
back contact. High quantum e�ciencies have been ob-
served many times in dye-sensitized sintered colloidal
TiO2 ®lms. It is expected from the outset that the geometry
exerts a considerable in¯uence on the device operation.

It was natural to inquire if the presence of an electric
®eld could explain the observed photocurrents by means
of the GaÈ rtner mechanism. In this respect, a calculation
by Albery and Bartlett for colloidal semiconductor par-
ticles [4] was adapted to nanoporous TiO2 electrodes by
GraÈ tzel and co-workers [5, 6], who suggested that owing
to the very small particle size in combination with the
low doping density, no signi®cant potential drop should
be present between the centre and the surface of an in-
dividual semiconductor particle. This was an in¯uential
proposal indeed, in that thereafter it has generally been
assumed that the role of electric ®elds in nanoporous
electrodes should be discarded [7±11], or equivalently,
that the Fermi level in the TiO2 ®lm is essentially ¯at.

An early ®nding on nanoporous electrodes was that
when illuminating the cell from the substrate side, larger
photoinduced currents resulted than when repeating the
experiment illuminating from the electrolyte side [7, 12,
13]. This is the opposite situation to that found in, for
example, a ¯at polycrystalline TiO2 electrode [14], where
illumination through the electrolyte produces the larger
response. These ®ndings appeared consistent with an
absence of large electric ®elds in nanoporous TiO2

electrodes, and models have been proposed [7, 10, 15] in
which the transport of photogenerated electrons is
driven by di�usion only. Nonetheless, some workers
have found experimental evidence pointing to the
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existence of electric ®elds near the back contact under
certain conditions. This occurred with electrore¯ectance
measurements [9], with electrochemical impedance
spectroscopy measurements [16] and with time-resolved
photocharge measurements [17].

Without losing from sight the growing multiplicity of
experimental results, here we wish to bring to focus a key
idea in studies of the semiconductor/electrolyte junction,
as the following: equilibration between the Fermi level
and the redox potential forces a potential drop to be
accommodated in the semiconductor. As formerly indi-
cated, this is the notion that provides the basic element
in the GaÈ rtner-Butler model. In the case of a nanopo-
rous electrode, however, a convincing explanation seems
not to have been provided about the exact location of
the potential drop. That the band bending at a certain
part of the system is small is not a su�cient argument
whereby most of the total potential drop must be dis-
regarded. Several authors have in fact expressed their
suspicions in this sense, for example GraÈ tzel and co-
workers [5] indicate that ``The clustering and intercon-
nection of the particles is expected to a�ect the potential
distribution, and more signi®cant electric ®elds are likely
to be developed in such an array as compared to indi-
vidual colloidal particles'', and Bosschloo et al. [9] claim
that ``The nanoporous TiO2 ®lm is . . . regarded as a
dielectric rather than a semiconductor surface layer, and
can, therefore, sustain a macroscopic electric ®eld. . .''.

In this context, the aim of the present work is to
achieve a coherent picture of potential distribution
which allows simple and quantitative statements to be
made. Our strategy is to translate established ideas about
a semiconductor/electrolyte junction in equilibrium to
the peculiar porous geometry, and explore the possibil-
ities. Hence we avoid entering into complexities such as
interface charge states, though recognizing that this may
be found to be necessary in further developments.

We begin with a brief revision of the properties of the
distribution of electric charge and potential in a planar
semiconductor in contact with a solution. This serves to
®x the concepts used in the rest of the work. A critical
appraisal is conducted on the application of the Albery-
Bartlett model to TiO2 nanoporous electrodes. Since we
are led to conclude that a proper description of the po-
tential distribution cannot be obtained on the basis of
the single sphere model, we consider an alternative ge-
ometry based on a columnar shape to model the nano-
porous structure, and the location of the missing
potential drop is revealed. In addition, the dependence of
the resulting electric ®eld on the properties of the contact
between the electrode and the substrate is studied.

Potential distribution and free electron density
in ¯at geometry

We recall some basic facts (see e.g. [18]) regarding band
bending in a planar (non-porous) n-type semiconductor

electrode, schematized in Fig. 1. The curvature of the
bands is described by Poisson's equation:

r2V � ÿ q
�

�1�

where V is the electric potential and � is the dielectric
constant of the semiconductor. For the cases of interest
here (large gap semiconductor), it can be assumed that
the minority carrier concentration is everywhere negli-
gible (this implies that the surface band bending is not
large enough to form an inversion layer), and hence the
charge density is

q � q ND ÿ n� � �2�
where ND is the donor density, n is the density of free
electrons, and q is the fundamental electric charge. For
the following, it is convenient to introduce the reduced
potential

/ � ÿ qV
kT

�3�

where k is the Boltzmann constant and T the tempera-
ture, so that /j j � 1 corresponds to the thermal voltage,
26 mV. Note the negative sign in Eq. 3 which makes the
graphic representation of / similar to that of the energy
band edges. Scaling of energies to the thermal energy of
0.026 eV will also be used throughout this paper, e.g. we
de®ne a reduced Fermi level energy as

eF � EF=kT �4�
For a non-degenerate semiconductor we can use the
Boltzmann statistics

n � Nc exp ÿ�Ec ÿ EF�=kT� � �5�
where Nc is the e�ective density of states in the con-
duction band. A suitable reference for the electric

Fig. 1 Scheme of the energy band edges and reduced potential / in a
planar n-type semiconductor electrode, showing the notation used in
this work. The junction with the electrolyte is at z � 0. eF is the Fermi
level, ec is the lower edge of the conduction band, and ev is the upper
edge of the valence band
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potential V � 0 can be taken at the quasi-neutral region,
so that the distance between the conduction band edge
and the Fermi level is given at any point by

Ec ÿ EF � Ecb ÿ EF� � ÿ qV �6�
Here Ecb is the conduction band edge in the bulk, where
the charge neutrality condition n � nb � ND holds. In
terms of the scaled magnitudes, Eq. 6 reads

ec ÿ eF � fc � / �7�
and obviously fc is a material property:

fc � ecb ÿ eF � ln Nc=nb� � �8�
Hence Eq. 7 constitutes a suitable de®nition of potential
/ even if there is no quasi-neutral region in the electrode,
as turns out to happen in the cases discussed below.
Note that the local free electron distribution can be
written

n � ND exp ÿ/� � �9�
Introducing the extrinsic Debye length
LD � ��kT=NDq2�1=2 and taking Eq. 9 into account, Eq.
1 can be written

r2/ � 1

L2
D

�1ÿ exp�ÿ/�� �10�

Although, in the case of a planar geometry, Eq. 10 can
be integrated exactly, several approximate forms of the
right-hand side expression are often distinguished in
certain regimes of potential / in order to obtain simple,
partially valid solutions. The weak band bending con-
dition j/j � 1 leads to a linealized Poisson-Boltzmann
equation:

r2/ � 1

L2
D

/ �11�

The full depletion condition /� 1 gives

r2/ � 1

L2
D

�12�

and ®nally one has an accumulation layer when /� ÿ1
with

r2/ � ÿ 1

L2
D

exp�ÿ/� �13�

Equations 11 and 13 have been written down mainly to
stress the fact that the value of / dictates the basic dif-
ferential equation that has to be solved. Of primary in-
terest here is the full depletion condition in Eq. 12, which
according to the famous model by Schottky gives a space-
charge region with parabolic bending near the junction:

/�z� � 1

2L2
D

�zÿ w�2 �14�

and a free-®eld zone in the quasi-neutral region of the
semiconductor (see Fig. 1). The surface potential /s

indicated in Fig. 1 gives the total internal potential drop
in the semiconductor:

/�0� � /s �15�
and from Eq. 14 the width of the depletion zone is given
by

w � �2/s�1=2LD �16�
The internal drop /s may be varied by means of an ex-
ternally applied potential, and according to Eq. 16 a
displacement of the inner edge of the depletion zone re-
sults. It is worth noting that the total potential di�erence
developed across the interface must include a potential
drop across the Helmholtz layer and surface charges. It is
apparent from Eq. 15 that /s is taken here as the po-
tential at the outer edge of the depletion layer, and thus it
does not include the drop at surface charge states.

The spherical particle

The Albery-Bartlett (A-B) model
for colloidal semiconductors

Our general objective is to apply to nanoporous ®lm
electrodes the ideas concerning electric potential distri-
bution which we have just reviewed. A convenient
starting point is the useful A-B calculation [4]. These
authors solved the Poisson equation for a spherical de-
pleted semiconductor, employing a similar approach to
that of Schottky for the planar electrode case. In the
following paragraphs we outline the A-B model for a
particle of radius a, distinguishing two situations: the
partially depleted sphere and the fully depleted sphere.
To facilitate discussion we formulate the model in terms
of the potential / de®ned in Eq. 7, which is linked to the
local concentration of electrons by Eq. 9.

The sphere is not fully depleted

Full depletion is assumed to occur only in the layer
rw � r � a, (Fig. 2a), where the potential is distributed
according to the Poisson equation (see Eq. 12):

1

r2
o
or

r2
o/
or

� �
� 1

L2
D

�17�

In the inner spherical region of radius rw, where quasi-
neutrality conditions prevail, we must set / � 0 in the
same fashion as in the planar electrode seen previously.
Consequently at the inside edge of the depletion layer
r � rw we have the boundary conditions o/=or � 0 and
/�rw� � 0. Integration of Eq. 17 gives the result

/ � 1

6L2
D

r2 ÿ 3r2w � 2
r3w
r

� �
�rw � r � a� �18�

which is sketched in Fig. 2a.
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Fully depleted sphere

Now n� ND in the whole spherical region, and again
we must solve Eq. 17. We state the two boundary con-
ditions at the central point: o/=or � 0 and
/�r � 0� � /0, and we obtain

/ � /0 �
1

6

r
LD

� �2

�19�

The surface potential is given by

/s � /0 � D/M �20�
where

D/M �
1

6

a
LD

� �2

�21�

is the maximum attainable potential drop between the
centre and the surface of the semiconductor particle. An
estimation of the extrinsic Debye length for colloidal
TiO2 particles in a nanoporous electrode with ND � 1017

cmÿ3 and � � 130�0 gives LD � 40 nm. If we take a
typical particle size of say 20 nm, the total band bending
as obtained from Eq. 21 is then smaller than the thermal
energy.

The particular case /0 � 0 corresponds to shrink to
rw � 0 the ®eld-free region of the non-depleted sphere
case (Eq. 18):

/ � 1

6

r
LD

� �2

�22�

This is the curve sketched in Fig. 2b. However, in gen-
eral /0 > 0, and the Fermi level is shifted downwards
with respect to the conduction band edge by an amount
kT /0 (assuming that the energy band edges are pinned
[19]), (Fig. 2c). Note as a peculiar feature of the general
solution, Eq. 19, that we do not have a zone, nor a point,
where / � 0. The signi®cance of /0 will be better

appreciated with the following remark. Assume that
/0 � 0 so that Eq. 22 is the good solution. However, if
a < LD, which as we have just seen is a most frequent
case, then we see from Eq. 22 that / < 1 everywhere in
the sphere, which means that the Fermi level is too close
to the conduction band edge to provoke full depletion.
In this situation the A-B model cannot be consistently
applied, and one should turn instead to Eq.11. The
general solution (Eq. 19) is indeed valid as long as full
depletion is warranted by the condition /0 � 1.

The potential at the central point of the sphere

A remaining question is how the value of /0 is ®xed in a
given situation. For clarity, we treat separately the case
of an isolated particle, and the case of a serial arrange-
ment of connected particles in touch with a conducting
substrate at one extreme.

In an isolated spherical particle the Fermi level must
equilibrate the redox potential in the electrolyte. The
necessary potential drop cannot be absorbed by the
small band bending D/M and consequently in equilib-
rium the /-potential at the centre is not zero, but /0.
Therefore we are concerned by the suggestion by others
[6, 20] that if majority carriers deplete from a colloidal
semiconductor which allows only a small degree of band
bending, the electrical potential di�erence resulting from
the transfer of charge from the semiconductor to the
solution has to drop within the Helmholtz layer. In ef-
fect, as we have already pointed out, depletion neces-
sarily requires that /0 � 1. If the potential di�erence
that is needed for equilibration of the Fermi level and
redox potential goes entirely to the Helmholtz layer,
then / < 1 in the sphere and depletion is negligible.

Let us turn to the situation of connected particles,
which is intended to model the nanoporous TiO2 elec-
trode. Results of electrochemical impedance spectros-
copy [8, 16] show that under a positive applied voltage
the semiconductor array of particles is highly insulating.
Hence we take for granted that substantial depletion
occurs in practical situations, as we expect from basic
principles.

Fig. 2a±c Scheme of the energy band edges and reduced potential /
in a spherical n-type semiconductor particle of radius a. Three cases
are shown: a partially depleted particle; b fully depleted particle with
/0 � 0; c fully depleted particle with /0 > 0
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Consider for de®niteness a columnar array of spheres
that stands on top of a tin oxide substrate (which in turn
is in contact with the counter electrode) and normal to
it. It is reasonable to expect that far from the substrate
the A-B model approximately applies to each particle.
This assumption has two consequences: that for all those
particles the /0 value must be the same, and that this /0

value must correspond to the one attained if the particles
were isolated in the electrolyte. On the other hand, and
neglecting temporarily the potential drop in the sub-
strate, for the particle that contacts the substrate we see
that / � 0 at one side of it, while / � /0 � 1 at the
opposite side where it contacts another particle. Here the
A-B model is not useful. Hence we may conjecture that
for a nanoporous electrode composed of small, low-
doped particles (a < LD), the ®rst few particles near the
substrate take in most of the total potential drop /s,
whereas each of the rest of particles shows only a small
band curvature from the centre to the surface, as de-
scribed by the A-B model.

The columnar model

Next we are interested in the development of a simple
quantitative model of a connected array of particles that
are depleted of free carriers. To this end we take a rep-
resentative perfect column, or cylinder, which from an
analytical point of view is more tractable than a chain of
spheres. The radius of the column is a and its length
(thickness of the electrode) is L, and it is assumed that
L� a. The columnar geometry has already been used by
other authors in relation to depleted porous electrodes
[8, 21]. The complete electrode consists of a bundle of
parallel columnar particles attached to a transparent
conducting oxide (Fig. 3b). Each columnar particle is a
dielectric with uniform charge density ND. Naming r and
z the radial and axial cylindrical coordinates as in Fig.
3c, from Eq. 12 we must solve

1

r
o
or

r
o/
or

� �
� o2/

oz2
� 1

L2
D

�23�

We split the solution into two parts

/�r; z� � /L�r; z� � /P�r; z� �24�

which satisfy in turn the Laplace equation

r2/L � 0 �25�
and the Poisson equation with homogeneous Dirichlet
boundary conditions:

r2/P � 1

L2
D

�26�

/P�r; L� � /P�a; z� � /P�r; 0� � 0 �27�

Any inhomogeneous boundary conditions that we de-
cide to utilize in the full solution must be set on the
Laplace part of the solution. We will use here the fol-
lowing.

Potential at the surfaces of the column

Surfaces in contact with the electrolyte

We set the surfaces surrounded by the electrolyte at a
constant potential

/L�r; L� � /L�a; z� � /s �28�
This is a major assumption in the model, equivalent to
the assumption that the potential drop at the Helmholtz
layer and surface states is independent of the position
along the surface. In a more advanced treatment, a
distributed potential along the semiconductor surface
should be considered, in principle.

Surface in contact with the substrate

Were the substrate a metal, we could simply set / � 0 at
the shaded circle z � 0 in Fig. 3c. In the problem under
consideration, however, it appears more appropriate to
treat the contact as an abrupt heterojunction in which a
part of the total potential drop /s may lie in a depletion
zone at the transparent conducting oxide. Strict adhe-
sion to the columnar geometry would lead us to solve a
two-dimensional Poisson equation in the substrate to-
gether with Eqs. 25 and 28 and match both functions via
the continuity condition of the electric displacement ®eld
across the two dielectrics (see below). However, this
cumbersome procedure seems unnecessary in view of the
fact that we ignore the detailed properties of the real

Fig. 3a±c Schematic representations of a nanoporous electrode. aAn
array of connected spherical particles. b A bundle of columnar
particles. c View of a columnar particle showing the coordinate
system; the shaded circle represents the junction with the substrate
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contact. Instead, we examine in the framework of the
column model two suitable forms of the potential at the
junction with the substrate. This permits comparison of
their respective e�ects on the overall potential distribu-
tion in the electrode, and to choose later the path of
greater simplicity.

A ®rst example consists in setting the circle at the
junction at a constant value:

/LI�r; 0� � /j r < a �29�
In our second choice the potential varies smoothly
from the value /j at the centre of the circle, to /s at
the edge:

/LII�r; 0� � /s � �/j ÿ /s�J0�r=d� �30�
Here J0 is the Bessel function of order zero, and we have
de®ned

d � 1

b1p
a �31�

where b1p is the lowest zero of the Bessel function,
J0�b1p� � 0, so that

d � 0:4161a �32�
Although Eq. 30 appears arbitrary at ®rst sight, it will be
shown immediately that from it results a simple ana-
lytical expression of the full solution.

In both indicated cases the reference for potential / is
given by the quasi-neutral region of the substrate.

Potential distribution in the columnar semiconductor

The procedure of the solution of the di�erential
equations 25 and 26 has been detailed in the Appendix.
The results are given here. For the Laplace part of the
solution we have, on the one hand, from Eqs. 28 and
29:

/LI�r; z� � /s ÿ �/s ÿ /j�

�
X1
m�1

2

bmp
J0�r=gm�
J1�bmp� exp�ÿz=gm� �33�

Here the numbers bmp are the zeroes of the Bessel
function (see Appendix), J1 is the Bessel function of
order one, and

gm �
1

bmp
a �34�

Furthermore, Eq. 33 requires that gm � L, which is
warranted by our previous assumption that a� L. On
the other hand, from Eqs. 28 and 30 there results

/LII�r; z� � /s ÿ �/s ÿ /j�J0�r=d� exp�ÿz=d� �35�
Regarding the Poisson part of the solution, the solution
of Eqs. 26 and 27 is

/P�r; z� � ÿ 8

p3L2
D

X1
m�1

1

bmp
J0�bmpr=a�

J1�bmp�

�
X1
p�0

1

�2p � 1�
1

��2p � 1�=L�2 � �bm=a�2

� sin��2p � 1�pz=L� �36�
The ®nal results are

/I�r; z� � /LI�r; z� � /P�r; z� �37�
and

/II�r; z� � /LII�r; z� � /P�r; z� �38�
In the 3-dimensional plots in Fig. 4 we represent /I and
/II for a � LD; L � 10a, /j � 5 and /s � 15. Each
summation in Eqs. 33 and 36 has been computed using
the 20 ®rst terms in the summatories. The reduced po-
tential distribution is better analysed separately in two
zones.

Potential near the back contact

Figure 4 shows that most of the total internal potential
drop falls in the close vicinity of the back contact.
Comparing Figs. 4a and b it is appreciated that no es-
sential di�erences in the overall potential distribution
exist between /I and /II. A crucial issue is the total
penetration of the electric ®eld in the electrode, which is
of the order of 2a in both examples. Note in Eq. 33 that
the characteristic penetration distance associated with
each term is gm, and that the largest of these numbers is
d � g1, which is the only one appearing in Eq. 35. In
forthcoming computations involving the potential dis-
tribution, we combine the most advantageous features of
both /I and /II. We assume an electric ®eld essentially
homogeneous in the radial direction, as in Fig. 4a; this
conveniently turns the problem into a one-dimensional
situation. Hence it is enough to perform the computa-
tions at the cylinder axis, and for that purpose we use the
expression of /II, which is simpler.

The potential along the axis is shown in Fig. 5. The
representation con®rms that the large rise of potential
near the back contact, which originates from the Laplace
part of the solution, takes place in a distance ca. 2a. It is
apparent from Eq. 35 that the characteristic distance d
of penetration is independent of the internal potential
drop in the electrode /s ÿ /j.

Potential far from the ¯at boundaries

At points far from the ¯at boundaries (2a < z < Lÿ 2a)
there is no potential gradient along the axial direction.
There is nonetheless a small curvature along the radial
direction, stemming from the Poisson part of the solu-
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tion. This is seen in Fig. 4c. The radial distribution of
potential in the region 2a < z < Lÿ 2a is shown in Fig.
6. Owing to symmetry under translation in the z di-
rection, in this zone of the cylinder we can derive the
potential distribution with a simple approach, similar to
that of A-B seen above. We solve, from Eq. 26:

1

r
o
or

r
o/
or

� �
� 1

L2
D

�39�

with boundary conditions o/=or � 0 at r � rw and
/�a� � /s. The result is

/�r� � /s ÿ
1

L2
D

1

4
�a2 ÿ r2� ÿ r2w

2
ln

r
a

� �
�40�

and for the case of full depletion rw � 0 we obtain

/�r� � /s ÿ
1

4L2
D

�a2 ÿ r2� �41�

This is the solution plotted in Fig. 6; actually using in
Eq. 36 only the ®rst three terms in bm we obtain an
excellent approximation to Eq. 41. Hence as regards
points located at z� a, no signi®cant di�erence exists
between the sphere and the column models, in accor-
dance with the reasoning presented earlier. The potential
drop between the centre and the surface is now

D/M �
1

4

a
LD

� �2

�42�

a result similar to that in Eq. 21.

Fig. 4a±c The reduced potential / in a longitudinal section of a fully
depleted cylindrical semiconductor particle for a � LD, L � 10a,
/j � 5 and /s � 15. All distances are scaled to the radius of the
cylinder a. a Representation of /I. Note that / � 5 at the surface in
contact with the substrate z � 0 (the exact result is / � 5), whereas
/ � /s at the rest of surfaces. b Representation of /II. c Enlarged
view of a showing the interval of potential /j � 0:9 /s ÿ /j

ÿ �
� / � /s

Fig. 5a, b The reduced potential /II along the axis r � 0 of a fully
depleted cylindrical semiconductor particle, for a � LD, L � 10a,
/j � 5 and /s � 15. a View of the full range of potential. b Enlarged
view showing the potential interval /j � 0:9 /s ÿ /j

ÿ � � / � /s.
Continuous line: full solution. Short dashes: Poisson part of the
solution, /P. Long dashes: Laplace part of the solution, /LII

Fig. 6 The reduced potential / along the radial direction
(z � constant, far from the planar boundaries) of a fully depleted
cylindrical semiconductor particle; same example as shown in Fig. 5
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The electric ®eld

In general, the expression of this magnitude is obtained
taking the derivative of the electric potential

E � ÿrV �43�
Next we calculate the value of the ®eld along the axis
r � 0. We will use the reduced ®eld

F � aq
kT

Ez � a
o/
oz

�44�

When a < LD (D/M � /s ÿ /j) the contribution of the
Poisson part of the solution can be neglected. Hence
from Eq. 35 the potential is

/�z� � /s ÿ �/s ÿ /j� exp�ÿz=d� �45�
and from Eq. 44 we get

F �z� � �/s ÿ /j�
a
d
exp�ÿz=d� �46�

Equation 46 is represented in Fig. 7. We check again
that the distance over which the electric ®eld extends is
about 4d � 2a. Note from Eq. 46 that the electric ®eld at
the interface is proportional to the internal potential
di�erence. This re¯ects the constancy of the character-
istic penetration distance d. By contrast, the electric ®eld
at the outer edge of the classical depletion zone varies as
the square root of the internal potential; see Eqs. 48 and
49 below.

The heterojunction at the back contact

It has been noted that the potential drop /s need not
reside entirely in the assembly of TiO2 particles. Rather,
a depletion region may be formed in the transparent
conducting oxide, an e�ect that has been well docu-
mented in the related case of the ITO/polycrystalline
TiO2 system [22]. It is of central importance to the
problem presently under study to evaluate the potential
/j at the junction between the electrode and the trans-
parent conducting oxide, for as we have just seen, the
larger the fraction of the potential in the porous semi-
conductor, the more the strength of the electric ®eld in it.
The transparent conducting oxide is frequently a de-
generate n-type semiconductor, in which case Boltzm-
ann statistics do not apply in the quasi-neutral region,

but nonetheless the Schottky model as given by Eqs. 14±
16 correctly describes the potential in the depletion zone
provided one notes that fc � 0 and nb � Nc; these values
can be shown to give a reasonable approximation in the
light of Fermi-Dirac statistics [23]. In fact the capaci-
tance of bare transparent semiconductor electrodes such
as ITO has been measured [24], and good Mott-Schottky
curves resulted from the analysis.

Distribution of potential at both sides
of the heterojunction

It follows from the preceding remarks that the situation,
illustrated in Fig. 8, consists of a totally depleted he-
terojunction [17, 22]. In the substrate side we have a
depletion zone which extends a distance w. The potential
is given by Eq. 14, which adapted to Fig. 8 turns into

/�z� � 0 z � ÿw� � �47�

� 1

2L2
D1

�z� w�2 ÿw � z � 0� �

with /�0� � /j and hence

w � �2/j�1=2LD1 �48�
From Eq. 47 we obtain the reduced ®eld

F �z� � 0 z � ÿw� � �49�

� 1

L2
D1

�z� w� ÿw � z � 0� �

In the electrode side the potential is given by Eq. 45. The
two solutions have to be matched by the condition

�1Ez�0ÿ� � �2Ez�0�� �50�
that is

�1
o/
oz

����
0ÿ
� �2o/oz

����
0�

�51�

It is implicitly assumed in Eq. 51 that the interface is
devoid of surface states. A recent treatment that includes

Fig. 7 The reduced electric ®eld F along the axis r � 0 of a fully
depleted cylindrical semiconductor particle

Fig. 8 Representation of the columnar electrode of length L and
conducting substrate, forming a totally depleted heterojunction. The
junction is at z � 0. The width of the depletion zone in the substrate is
w, and d is the characteristic distance of penetration of the electric
®eld into the column. Doping levels and dielectric constants are: for
the substrate, ND1 and �1; for the electrode, ND2 and �2
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this e�ect is given in [25]. From Eqs. 45, 47, 48 and 51 we
obtain���
2
p �1d

�2LD1
/1=2
j � /s ÿ /j �52�

Introducing the parameter

b � �1d
�2LD1

� �2

�53�

we can write the solution of Eq. 52 as

/j � /s ÿ b 1� 2/s

b

� �1=2

ÿ1
" #

�54�

This is the ®nal result that dictates how the two media
share the total drop /s. We ®nd two limiting cases: for
b � 0 we obtain /j � /s, whereas for b > 10/s we have
/j � /2

s=2b. Equation 54 is plotted in Fig. 9 for a total
drop /s � 40. Giving values to the relevant parameters,
we can now plot the potential, the electric ®eld and the
energy of the conduction band edge. This is done in Fig.
10, where the parameter values have been chosen so as
to facilitate visualization.

More realistic ®gures are: ND1 � 1020 cmÿ3 and
�1 � 8�0 for the substrate, where �0 is the permittivity of
vacuum, giving LD1 � 0:3 nm, and for the TiO2 elec-
trode ND2 � 1017 cmÿ3, �2 � 130�0 yielding LD2 � 43 nm
and fc � 10. Considering that the radius of the particles
is a � 10 nm, we have d � 4 nm and b � 2:2. For a total
voltage drop Vs � ÿ1 V, corresponding to /s � 40, we
obtain from Eq. 54 /j � 34. Hence 15% of the total
voltage di�erence is in the electrode in this example, and
the width of the depletion zone in the substrate is
w � 3 nm. Finally, an estimation of the electric ®eld
strength in the electrode can be obtained from Eqs. 44
and 46:

Ez�0�� � ÿ kT
qd
�/s ÿ /j� �55�

giving Ez�0�� � 4� 105 V cmÿ1.

Discussion and conclusions

Peculiar properties appear in the distribution of the
electric potential in nanocrystalline particulate semi-

conductor electrodes, with no counterpart in a planar
electrode. A strikingly clear demonstration in this re-
spect was provided by studies on crystalline GaP porous
networks by Vanmaekelbergh and co-workers [21, 26].
At low band bending, the depletion layer is so thin that
it follows the surface of the pores, but once the entire
porous layer is depleted (at larger positive applied po-
tential) it no longer contributes to the di�erential ca-
pacitance. The experimental signature of this e�ect is a
change of slope in the Mott-Schottky plot.

To gain insight into this type of phenomenon, we
have worked out a model for the three-dimensional
distribution of electric potential in a chain of nanopar-
ticles connected to an electrode at one end and sur-
rounded with a liquid material. As a suitable approach
to the complex geometry we assume axial (cylindrical)
symmetry. This assumption, which is in line with that
adopted in previous studies on related systems [16, 21],
turns the problem into a reasonable two-dimensional
calculation which can be e�ected analytically. None-
theless, a direct confrontation of the model with exper-
iment appears feasible, since the fabrication of tubular
semiconductor particles in the ultrasmall scale is already
being envisioned by some workers.

In depletion conditions, and in equilibrium (no
charge transport), the donor density ®xes at every point
the curvature of the electric potential. Ions in the sur-
rounding medium play no role in this respect: this ensues
from the local nature of Poisson's equation. However,
ion distribution in the liquid is able to exert an in¯uence
over the inner electric ®eld through the boundary con-
ditions. Here we have set the simplest boundary condi-
tion (an equipotential at the distributed porous surface),
and the e�ect of more complex conditions is an issue
that remains to be investigated. Keeping this provision
in mind, several major conclusions can be extracted
from the model that has been presented.

Fig. 9 The potential at the interface substrate/electrode, for a total
potential drop /s � 40, as a function of characteristic parameters
indicated in Fig. 7 and in the text

Fig. 10 Representation of a the energy bands, b the reduced
potential, and c the electric ®eld, in a columnar electrode in contact
with a substrate. Distances are scaled to radius of columnar electrode
a � LD2, and the total potential drop is /s � 40. The material
parameters are: for the substrate, ND1 � 1019 cmÿ3, �1 � 8�0 and
fc � 0; for the electrode, ND2 � 1017 cmÿ3, �2 � 30�0, and fc � 20
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The ®rst is that a signi®cant part of the total potential
drop can be accommodated in the semiconducting array
of particles. This result follows from detailed consider-
ation of basic principles, and it is in contrast to a widely
held notion that was concluded on the basis of a single
sphere model. The important consequence ensues that
we need not invoke an unreasonably large potential
drop at the Helmholtz layer.

A second conclusion is that the potential distribution
is exactly the opposite with respect to the planar elec-
trode case, as regards both the electric ®eld location and
the band curvature, cf. Figs.1 and 5. In a semiconductor
column with a radius smaller than the extrinsic Debye
length, the ®eld is agglomerated at the back contact. The
role of this ®eld is crucial in that the corresponding
voltage drop shifts downwards the Fermi level with re-
spect to the conduction band in the rest of the electrode,
so that full depletion and essentially ¯at bands are at-
tained there. Furthermore, and importantly, this general
picture about the electric ®eld distribution is entirely
consistent with the results of detailed experiments that
investigated the issue, viz. electrore¯ectance measure-
ments by Goossens and co-workers [9], and the elec-
trochemical impedance spectroscopy and dye-desorption
experiments by Gregg and co-workers [8]. Both groups
have concluded that in a TiO2 nanocrystalline porous
electrode in dark conditions an electric ®eld is observed
near the back contact when a positive potential is ap-
plied.

The third main consequence of the model shows
again an important di�erence with the planar electrode
case. In the latter the region along which the internal
potential drop is distributed (space-charge or depletion
region) grows steadily as the amount of internal poten-
tial drop is increased. This lies at the root of the widely
used capacitance-voltage technique, which provides
important information on band structure via the inter-
pretation of Mott-Schottky plots. In its turn, in the de-
pleted semiconductor column the electric ®eld augments
in strength as the internal potential di�erence increases,
but the region in which a non-negligible ®eld exists
maintains an unchanging size of the order of the radius
of the particle.

It is interesting to observe that these di�erences be-
tween the planar and the nanoporous electrode cases
stem from the fact that entire depletion occurs in a
system only if the quantity �2/s�1=2LD is of the order of
the ``minimal size'' available. In the nanoporous elec-
trode this minimal size is the radius of the particle,
whereas in an planar homogeneous electrode it is the
thickness of the electrode. This implies that the internal
potential drop necessary to cause full depletion is sub-
stantially larger in the latter case than in the former.

From these considerations, some indications follow
regarding the more general problem of transport theo-
ries under illumination. As we commented at the be-
ginning, in the GaÈ rtner-Butler model the background
Schottky barrier-type ®eld in the dark is una�ected by
photogenerated carriers. This has been assumed in the

original calculations by Butler [1] and also in most of the
later more re®ned treatments [27]. Contrarily, the sce-
nario depicted in terms of the column model appears to
be unstable under intense illumination. Photogenerated
carriers can modify substantially the distribution of
potential in the dark. Therefore if under illumination
there exist electric ®elds that drive the charge carriers
concurrently with concentration gradients, those electric
®elds may be sustained, at least in part, by the distri-
bution of the carriers that maintain the photocurrent.

Appendix

We wish to determine the electrostatic potential / in a homoge-
neously charged cylindrical particle of radius a and length L. We
have to solve Eqs. 23±28, with an additional boundary condition
that speci®es the potential at the circle z � 0. We take ®rst the
Laplace part of the solution. We ®x the value of / at the central
point of the base circle z � 0, by means of

/L�0; 0� � /j �A1�
and we write the solution as

/L�r; z� � /s ÿ �/s ÿ /j�u�r�w�z� �A2�
Applying the method of separation of variables, Eq. 25 splits into
two equations:

o2w
oz2
ÿ 1

g2
w � 0 �A3�

1

r
o
or

r
ou
or

� �
� 1

g2
u � 0 �A4�

where g2 is a positive constant to be determined. The boundary
conditions of Eqs. 28 and A1 impose that

w�0� � 1; w�L� � 0 �A5�
and also

u�0� � 1; u�a� � 0 �A6�
The solution of Eqs. A3 and A5 is

w�z� � exp�ÿz=g� �A7�
provided L� g, which is justi®ed if L� a. The solution of Eqs. A4
and A6 is

u�r� � J0�r=g� �A8�
where J0 is the Bessel function of zero order. Equation A6 requires
also that

J0�a=g� � 0 �A9�
and thus gm � a=bmp, where the numbers bmp are the zeroes of the
Bessel function, J0�bmp� � 0, marked so that bm < bm�1, with the
values b1 � 0:7655, b2 � 1:7546, b3 � 2:7546, and bm � mÿ 1=4
for m� 0 [28]. We can write the solution of Eq. 25 as a linear
combination:

/L�r; z� � /s ÿ �/s ÿ /j�

�
X1
m�1

AmJ0�r=gm� exp�ÿz=gm� (A10)

which satis®es the required boundary conditions of Eqs. 28 and A6
ifX1
m�1

Am � 1 �A11�
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is ful®lled. The undetermined coe�cients Am re¯ect the fact that, so
far, the values of Eq. A10 in the contact circle (z � 0� have been
speci®ed only at the centre and at the edge, that is

/L�r; 0� � /s ÿ �/s ÿ /j�f �r� �A12�
where

f �r� �
X1
m�1

AmJ0�r=gm� �A13�

with values at the extremes

f �0� �
X1
m�1

Am � 1; f �a� � 0 �A14�

Once f is given the coe�cients Am can be determined using Eq. A13
and the orthogonality properties of the Bessel functions. A ®rst
choice consists in setting the circle at the contact at a potential /j:

f I�r� � 1 r < a (A15)

� 0 r � a

The full solution is given in Eq. 33. As a second choice we take only
the ®rst term in the summatory of Eq. A13:

f II�r� � J0�r=d� (A16)

where d is de®ned in Eq. 31. The corresponding solution is given in
Eq. 35.

To ®nd out the Poisson part of the solution, the pertinent Green
function, which is given in [29], is integrated over the whole cyl-
inder volume. The result is given in Eq. 36.
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